The Opportunity for an Estonian Center for Applied Research

Discussion/Feedback Meeting 13 February 2019

Meeting Objectives

- Discuss the opportunity for creating an Estonian Center for Applied Research (ECAR)
- See where there is agreement
- And where there is disagreement
- And get your input on action items, next steps

Personal Background

STANFORD STRADBUSINESS

McKinsey&Company

Network Equipment Technologies

RENEWABLE 📌 FUNDING

Global Perspective on Innovation

© Innovation Perspectives 2019

ECAR Opportunity

- Objectives for this meeting
- Agenda
- The Challenge for Estonia
- The Need for Applied Research
- Interviews/Preliminary Conclusions
- Alternative Scenarios for Estonia
- Lessons from Other Countries
- Alternative Scenarios for ECAR
- Next Steps

The Challenge for Estonia

• How to advance GDP/person to EU average or above?

Estonia – Great Progress

View Estonia's GDP per Capita from 1993 to 2017 in the chart:

Estonia – not yet at EU average

GDP/Person - 2014

Source: Eurostat

How to Grow GDP/Person?

Income level

Stages of Economic Development

Innovation driven

Factor driven

Innovation Perspectives

Source: World Economic Forum

Estonia Lagging in Innovation

Note: International comparability may be limited due to differences in innovation survey methodologies and country-specific response patterns. European countries follow harmonised survey guidelines with the Community Innovation Survey. Source: OECD, based on the 2017 OECD survey of national innovation statistics and the Eurostat, Community Innovation Survey (CIS-2014), http://oe.cd/ inno-stats, June 2017. StatLink contains more data. See chapter notes.

StatLink http://dx.doi.org/10.1787/888933619372

Innovation = Improving

Innovation in part driven by R&D

-Total R&D, % of GDP -Private sector R&D, % of GDP

© Innovation Perspectives 2019 Source: Statistical Office of Estonia

EU – R&D Spending

Gross domestic spending on R&D Total, % of GDP, 2000 - 2017

Source: OECD Science, Technology and R&D Statistics: Main Science and Technology Indicators

© Innovation Perspectives 2019

Innovation in part driven by R&D

— Total R&D, % of GDP — Private sector R&D, % of GDP

© Innovation Perspectives 2019 Source: Statistical Office of Estonia

Estonia Private R&D Spending

Total PRIVATE sector external and internal R&D (kEUR)										
	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Total	103,154	103,861	133,930	254,019	239,209	173,592	145,472	153,699	162,389	166,357
Agriculture	326	*	*	158	*	*	*	*	*	*
Mining	*	*	*	*	*	*	*	*	*	*
Manufacturing	22,992	19,646	44,422	156,178	96,343	61,020	32,521	39,465	34,831	43,755
Energy	4,663	5,741	4,444	3,207	4,726	6,251	16,758	9,679	12,592	12,990
Utilities	*	*	*	*	*	*	*	*	*	*
Construction	*	*	*	352	3,097	*	*	83	649	1,209
Wholesale, retail, sale of vehicles	6,908	7,690	4,872	3,912	3,354	2,012	3,642	188	1,386	2,360
Transport and logisitics	3,199	1,215	*	*	*	*	*	*	2,531	2,501
Accomodation and restaurants	*	*	*	*	*	*	*	*	*	*
ІСТ	38,564	33,527	32,231	36,926	64,226	50,395	44,856	58,758	72,784	64,060
Finance and Insurance	8,503	10,906	15,786	12,650	11,972	13,504	14,001	14,280	12,523	17,823
Real estate	*	*	*	*	*	*	*	*	*	*
Prof. Scientific & Technical Activities	16,273	22,319	29,500	26,993	38,311	35,939	27,622	24,687	21,716	20,229
Public administration & defence, compulsory social security	*	*	*	*	*	*	*	*	*	*
Healthcare	0	1,085		1,312	1,303	1,131	2,071	1,338	*	*
Social services	0	0	0	0	0	0	0	0	0	0
Art, entertainment and leisure	0	0	0	0	0	0	0	0	0	*
Other service sectors	0	0	0	0	0	0	0	0	0	0
GDP	16,508	14,158	14,708	16,661	17,928	18,926	20,051	20,646	21,675	23,603
Private R&D expenditure	0.6%	0.7%	0.9%	1.5%	1.3%	0.9%	0.7%	0.7%	0.7%	0.7%

* Did not report, less than 4 companies reporting

Summary of the challenge:

- Improving Estonia's economy by doing more R&D, creating more technology-based products for export
- Do we agree?

The Need for Applied Research

Academic Research

- Can I find a drug to cure cancer?
- Can I invent software to identify faces?
- Can I build a robot hand to grab things?

Product Development

- Clinical trials, manufacturing scale
- Security, retail applications
- The Amazon Picking challenge

TRL (Technology Readiness Level) Model

The Need for Applied Research

• Basic/Lab Research ≠ product ready for customers

	Academic Requirement	Commercial Requirement
Certainty/proof	80% confidence	100% confidence
Scale	Lab scale	Commercial scale
Defect level	Known bugs - ok	Zero P1, P2 bugs
Documentation	Lab notes	User manuals
IP Status	Thinking about patent application	Patent application in process or approved
Staffing	Grad students	Full-time engineers

BIG DIFFERENCE!!!

Applied Research In Estonia - today

© Innovation Perspectives 2019

Applied Research – Change the Universities

© Innovation Perspectives 2019

Applied Research – Change the Universities

© Innovation Perspectives 2019

Applied Research – Encourage Companies

© Innovation Perspectives 2019

Applied Research – Encourage Companies

© Innovation Perspectives 2019

Applied Research Institute – Option 3

© Innovation Perspectives 2019

US R&D Execution – Who does R&D?

Indicators 2018: Recent Trends in U.S. R&D Performance, Chapter 4.

© Innovation Perspectives 2019

US R&D Spending – by TRL groups

TABLE 4-4

U.S. R&D expenditures by type of work: Selected years, 1970–2015

(Billions of current and constant 2009 dollars; percent distribution)

Binons of current and constant 2009 de	mars, percen	t uistributi	011)							
Type of work	1970	1980	1990	2000	2010	2011	2012	2013	2014	2015 ^a
			Current	\$billions						
All R&D	26.3	63.2	152.0	267.9	406.6	426.2	433.6	454.0	475.4	495.1
Basic research	3.6	8.7	23.0	42.0	75.9	73.0	73.3	78.5	82.1	83.5
Applied research	5.8	13.7	34.9	56.5	79.3	82.1	87.1	88.3	91.9	97.2
Experimental development	16.9	40.7	94.1	169.4	251.4	271.0	273.3	287.1	301.5	314.5
		Co	onstant 20	09 \$billion	S					
All R&D	115.3	142.5	227.6	327.2	401.7	412.5	412.1	424.6	436.8	450.1
Basic research	15.8	19.7	34.5	51.3	75.0	70.7	69.7	73.4	75.4	75.9
Applied research	25.2	30.9	52.3	69.0	78.3	79.5	82.8	82.6	84.4	88.3
Experimental development	74.3	91.8	140.9	206.9	248.4	262.3	259.7	268.6	277.0	285.9
			Percent dis	stribution						
All R&D	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Basic research	13.7	13.8	15.2	15.7	18.7	17.1	16.9	17.3	17.3	16.9
Applied research	21.9	21.7	23.0	21.1	19.5	19.3	20.1	19.5	19.3	19.6
Experimental development	64.4	64.5	61.9	63.2	61.8	63.6	63.0	63.3	63.4	63.5

Innovation Perspectives

US R&D Spending

USA

Estonia R&D Statistics

Source: Statistics Estonia

Estonia R&D Spending

BREAK

What we were trying to learn

List of In-Person Meetings

- Anne Sulling—Member of the Parliament of Estonia
- Seth Lackman—CEO of Fujitsu Estonia
- Robert Kitt & team Swedbank
- Bo Henriksson, former CEO of ABB
- Siim Espenberg and Alo Lilles—specialists in business development at Tartu City government
- Katrin Pihor, Head of Research Policy Department, Ministry of Education.
- Jaak Vilo, head of the institute of Computer Science, Tartu University
- Ene Tammsaar, CEO of Bio CC
- Mait Klaassen, Rector of the University of Life Sciences
- Ülle Jaakma, Vice Rector of Research, University of Life Sciences
- Meelis Kadaja, Director of Business Development of Icosagen
- Ulo Såre, CEO of Reach-U
- Toomas Asser, Rector of Tartu University
- Erik Puura, Vice rector for development, Tartu University
- Kristjan Vassil, Vice rector for research
- Andres Koppel, Director General of the Estonian Research Council
- Hanno Tomberg, Member of the Board of the Archimedes Foundation
- Indrek Reimand, Deputy Secretary General, Ministry of Education and Research

© Innovation Perspectives 2019

- Raivo Vilu, Director of Development & Aavo Sõrmus, Chairman of the Council of TFTAK (Center of Food and Fermenatation Technologies)
- Jaak Aaviksoo, Rector of Tallinn University of Technology,
- Mario Kadastik, Deputy Director of the National Institute of Chemical Physics and Biophysics.
- Kaupo Reede, Director of the Economic Development Department
- Sigrid Rajalo, Strategy Adviser to the Economic Development Department
- Oliver Väärtnõu, CEO of Cybernetica
- Karin Kivimåe, COO of Guardtime
- Sigrid Harjo, Member of the Board, Enterprise Estonia
- Triin Nõlvak, Area manager, Enterprise Estonia
- Meelis Kitsing, head of the Foresight Center and his team (Mari Rell, Johanna Vallistu)
- Kristjan Mändmaa, Dean of Design at the Academy of Arts, and his team (Martin Pärn, professor of strategical design in the Estonian Academy of Arts, Ruth Melioranski, researcher at the Estonian Academy of Arts, and Maarja Mõtus, Head of Product Design at the Estonian Academy of Arts).
- Mr. Rene Tammist, Minister of Entrepreneurship and IT
- Tiit Land, Rector of Tallinn University,
- Tarmo Soomere, President of the Estonian Academy of Sciences

List of Interviews

Wood and Forestry	Wooden Houses	Food				
Estonian Cell AS	MATEK AS	Salvest AS				
Lemeks AS		E-PIIM TOOTMINE AS				
Peetri Puit OU		TERE				
Graanulinvest	Metal Industry					
	Hyries					
Chemical Industry		Electronics				
Chemi-Pharm AS		Rantelon OU				
Mayeri Industries AS	Machinery	Skeleton Technologies OU				
JOIK OU	Hekotek AS	Artec Design OU				
	Equa					
Energy						
Virum Keemia Grupp AS		Plastic Packaging				
Eesti Energia AS	Electrical Appliances	Estiko-Plastar				
Elektrilevi	Estel					
	Harju Elekter					
Logistics	ENICS	Construction Materials				
Cleveron		Bauroc				
Textiles and Sewing	Biotechnology					
Baltika	Icosagen	Start-ups				
Conectra		UBIK				
		Starship Technologies				
ICT Locals	ICT Multinationals	Plumbr				
Proekspert	Fujitsu	Geneto				
GuardTime	Ericsson					
Reach-U	Tieto					
Fortumo	Playtech					

Preliminary analysis/conclusions

- Everyone in Estonia agrees with the challenge
- Applied research gap exists in Estonia as elsewhere
- Common challenges:
 - Scale
 - People/skills/availability
 - Culture/aggressiveness
University of Tartu

2015 data, 2017 ratings	Agriculture & veterinary sciences	Engineering & Technology	Humanities & the Arts	Medical & Health Sciences	Natural Sciences	Social Sciences
FTE Staffing	238.2	759.6	531.6	560.9	1039.6	487.1
research	116.8	372.6	82.5	167.3	471.9	79.6
teaching	21.9	150	214	204.9	170.2	231.4
tech & Aux	99.5	237.1	235.1	216	397.6	176
Research funding						
funding total	€ 234,603	€ 4,344,191	€ 3,833,985	€ 12,845,031	€ 27,538,067	€ 4,504,974
# projects	4.33	61.53	90.68	151.79	404.91	141.74
R&D/project	€ 54,181	€ 70,603	€ 42,280	€ 84,624	€ 68,010	€ 31,783
R&D/FTE	€ 1,307	€ 8,313	€ 12,931	€ 37,094	€ 42,888	€ 14,576
Scientific Impact	very good	very good	good	very good	very good	good
Sustainability & potential of research	very good	very good	good	good	very good	good
Societal impact	very good	very good	good	good	very good	good

Tal Tech

	TalTech research groups																			
			Staffi	research gr	ups		Invent	tions 01.01.201	0 - 25.09.2	018			Research a	nd developm	ent (R&D) in	come 2017	(€)			
	Research discipline	Number of research groups	From another EU country	Number of group members	ncl. number of post- doctorates	Incl. number of doctoral studenst	Number of inventions	Number of patent applications	Number of patents	Number of utility models	Total R&D income 2017	incl. Est. Research Council funding (IUT, PUT and other)	incl. targeted appropriations (Ministry of Education and Research)	incl. R&D contracts and services	domestic	interna-tional	incl. Projects grants for R&D	domastic	interna-tional	Number of ongoing projects in 2017
1.1	Mathematics	6		24		4	0	6	0	0	303,876	295,076	0	0	0	0	8,800	8,800	0	7
1.2	Computer and information sciences	10		111	1	22	1	10	1	0	1,543,022	187,500	143,000	277,067	213,577	63,490	935,455	379,198	556,257	31
1.3	Physical sciences	4		33	1	8	3	4	1	0	790,299	472,000	0	14,400	14,400	0	303,899	203,873	100,027	6
<mark>1.4</mark>	Chemical sciences	12	1	110		34	19	12	25	2	2,224,319	825,400	0	351,332	351,332	0	1,047,587	421,698	625,889	39
1.5	Earth and related environmental sciences	7		97	1	23	0	7	0	0	1,790,181	745,574	0	575,371	357,338	218,033	469,237	179,197	290,040	67
1.6	Biological sciences	10		64		16	5	10	2	0	1,085,217	851,323	0	115,638	2,300	113,338	118,256	118,256	0	18
1.7	Other natural sciences	1		20		9	2	1	2	0	147,085	85,200	0	61,885	61,885	0	0	0	0	6
2.1	Civil Engineering	7		107	1	37	1	7	0	1	1,826,968	454,004	0	425,849	387,449	38,400	947,116	709,395	237,721	50
2.2	Electrical engineering, electronic engineering, information engineering	18	1	193	5	67	26	18	36	8	6,671,387	877,098	0	1,296,189	1,132,770	163,419	4,498,100	1,154,912	3,343,188	92
2.3	Mechanical engineering	7		57		12	1	7	1	0	2,383,290	422,710	0	5,000	5,000	0	2,337,140	2,300,440	559,380	18
2.4	Chemical engineering	1		10		5	0	1	0	0	15,342	0	0	4,500	4,500	0	10,842	0	10,842	3
2.5	Materials engineering	7		87	1	37	19	7	10	0	715,909	432,280	0	155,653	80,938	74,715	127,976	127,976	0	23
2.6	Medical engineering	3		20		8	9	3	7	0	163,867	88,000	0	0	0	0	75,867	75,867	0	3
2.7	Environmental engineering	4		36		9	1	4	0	1	795,619	149,500	0	294,784	289,784	5,000	351,335	287,262	64,073	23
2.8	Environmental biotechnology																			

University of Life Sciences

	Scientific impact of research	Sustainability and potential of research	Societal importance of research	Scientific basis in the field is sufficient to conduct doctoral studies.
EMU (Estonia University of Life Sciences)				
The Estonian University of Life Sciences (EMU) (EMÜ_loodusteadused)	good	good	very good	yes
EMU (EMÜ_tehnika ja tehnoloogia). Engineering & echnology	good	good	very good	yes
EMÜ_põllumajandusteadused ja veterinaaria Agriculural science and veterinary science	good	very good	very good	yes

- Research in plant physiology particularly strong
- Some industry cooperation on precision agriculture
- But small projects average private research effort = €3k
- No tech transfer office

"Industry Collaboration"

2.2 Elec. Eng.			Web of Science	Category Normalized	Times	% Docs		% Documents in	% Industry
Institution	Period	Research area	Documents	Citation Impact	Cited	Cited	H-Index	Top 10%	Collaborations
Cybernetica	2015-2017	2.2	7	1.54	18	71.43	2	28.57	85.71
	2015	2.2	4	2.01	7	100.00	2	25.00	75.00
	2016	2.2	3	0.92	11	33.33	1	33.33	100.00
	2017	2.2	-	-	-	-	-	-	-
Estonian Marine Institute	2015-2017	2.2	5	2.62	1	20.00	1	20.00	0.00
	2015	2.2	1	0.00	0	0.00	0	0.00	0.00
	2016	2.2	3	0.00	0	0.00	0	0.00	0.00
	2017	2.2	1	14.45	1	100.00	1	100.00	0.00
Estonian University of Life Sciences	2015-2017	2.2	6	0.23	1	16.67	1	0.00	0.00
	2015	2.2	3	0.46	1	33.33	1	0.00	0.00
	2016	2.2	-	-	-	-	-	-	-
	2017	2.2	3	0.00	0	0.00	0	0.00	0.00
Narva College	2015-2017	2.2	1	0.24	1	100.00	1	0.00	0.00
	2015	2.2	-	-	-	-	-	-	-
	2016	2.2	1	0.24	1	100.00	1	0.00	0.00
	2017	2.2	-	-	-	-	-	-	-
National Institute of Chemical Physics & Biophysics (NICPB)	2015-2017	2.2	4	2.03	24	75.00	2	50.00	0.00
	2015	2.2	2	2.67	20	100.00	2	100.00	0.00
	2016	2.2	-	-	-	-	-	-	-
	2017	2.2	2	1.37	4	50.00	1	0.00	
Tallinn University	2015-2017	2.2	22	2.31	12	36.36	2	18.18	4.55
	2015	2.2	12	0.60	6	33.33	1	8.33	0.00
	2016	2.2	6	0.84	3	33.33	1	16.67	0.00
	2017	2.2	4	7.01	2	50.00	1	50.00	25.00
Tallinn University of Technology	2015-2017	2.2	502	1.08	854	33.86	11	10.76	
	2015	2.2	164	1.41	560	48.78	9	15.24	0.61
	2016	2.2	191	1.04	235	34.55	7	11.52	0.52
	2017	2.2	144	0.72	56	15.28	4	4.17	2.08
Tartu Observatory*	2015-2017	2.2	11	0.97	27	63.64	3	9.09	0.00
	2015	2.2	4	2.16	18	100.00	3	25.00	0.00
	2016	2.2	7	0.30	9	42.86	2	0.00	0.00
	2017	2.2	-	-	-	-	-	-	-
Tartu University Institute of Ecology & Earth Sciences	2015-2017	2.2	1	0.00	0	0.00	0	0.00	0.00
	2015	2.2	-	-	-	-	-	-	-
	2016	2.2	-	-	-	-	-	-	-
	2017	2.2	1	0.00	0	0.00	0	0.00	0.00
University of Tartu	2015-2017	2.2	136	2.50	278	50.74	8	20.59	1.47
	2015	2.2	47	2.46	191	68.09	7	27.66	2.13
	2016	2.2	45	1.46	60	46.67	4	15.56	2.22
	2017	2.2	40	4.29	24	35.00	2	20.00	0.00
University of Tartu Institute of Physics	2015-2017	2.2	18	0.52	37	38.89	4	5.56	0.00
	2015	2.2	6	1.27	29	83.33	3	16.67	0.00
	2016	2.2	7	0.26	8	28.57	2	0.00	0.00
	2017	2.2	5	0.00	0	0.00	0	0.00	0.00

University Input

- Have met with all of the universities in Estonia
- Key conclusions:
 - Good research taking place, driven by academic priorities
 - Research is largely unrelated to industry needs
 - Research not focused on applications (TRL 1-4, not 5-9)
- Universities are unlikely to be the drivers/catalysts for industry innovation, technology adoption

Company Needs (partial)

	Research	Technical
Industry Sector	Interests	Services Needed
Wood, Forestry	plywood enhancements	wood pellet testing, characterization
	cellulose, wood chemistry	Glue-lam beam strength and safety testing/certification
	biological fermentation	fire & sound-proofing tests
	forestry robots	paper products testing
Chemistry	cosmetics development	cosmetics certification
	pharmaceutical development	clinical trials
	packaging for chemicals, detergents	robotic production lines
		biological analysis, DNA synthesis
		eco-certification
		e-commerce
Energy	oil shale refinement, processing	
	green energy alternatives	
	AI/network management	
	energy demand management	
	data analytics	
	energy storage, distributed generation	
ІСТ	data science/Al	product development
	radio, power technologies	product design
	battery/energy technology	business development
		product safety certifications
Food/Dairy	probiotics	factory automation
	animal feed supplements	food safety certifications
	packaging for food	applied food scientists
	food science	

© Innovation Perspectives 2019

Company Input

- Understand the challenge; want to grow, improve
- Diverse set of needs/requirements
- Scale is a challenge, companies are resource constrained:
 - People, skills
 - Sometimes funding
- Little university collaboration
 - Different time scales, expectations, incentives
 - Mismatch on skill requirements
- Mixed perspectives on government programs (Enterprise Estonia, Nutikas)
- Requirement/expectation for confidentiality from ECAR

Ministry of the Economy

Estonian Research and Development and Innovation Strategy 2014-2020

"Knowledge-based Estonia"

High-level requires focus

Implies/Requires Applied Research

па							
Indicator		Target level of the indicator					
General aim	2010	2011	2012	2020	EU level		
Gross domestic expenditure on R&D (GERD), % of GDP 1:2	1.62%	2.41 % ¹		3%	EU2011: 2.03%		
inc. business enterprise sector (BERD), % of GDP ^{1,2}	0.81%	1.52% ¹		2%	EU2011: 1.26%		
Labour productivity per person employed (EU27=100) ^{1:2}		68%		80%	EU2011: 100%		
Position in the Innovation Union Scoreboard ³			14(2013)	10			
Objective I: Research in Estonia is of a high level and diverse							
Number of PhDs awarded in an academic year ⁶	175	250	190	300			
Scientific publications among the top 10% most cited publications worldwide as % of total scientific publications of the country ^{3,7}	7.5% (2008)			11%	EU2008: 10.9%		
Number of scientific publications per million population ^{1,8}	1,125	1,174	1,191	1,600	EU2012: 1,310		
Objective II: Research and development functions in the interests of the E	stonian so	ciety and e	conomy				
Share of public sector research and development expenditures financed by the private sector ^{1,2}	3.9%	3.1%		7%	EU2010: 7.01%		
Government budget appropriations or outlays on R&D (GBAORD) by socio-economic objectives other than GUF ^{1,2}		~ 30%		40%	EU2008-2010: 43.1-44.6%		
Objective III: RD makes the structure of the economy more knowledge-int	ensive						
Exports of high technology products as a share of total exports ^{1,2}	10.4%	14.9%		15%	EU2011: 15.4%		
Employment in high-tech and medium high-tech manufacturing and in knowledge-intensive services (KIS) as % of total employment ^{1,2}	6.0%	6.9%		9%	EU2011:8.3%		
Objective IV: Estonia is active and visible in international RDI cooperation							
The success rate of Estonia in EU research and development framework programme Horizon 2020: funding received per capita, % of EU average, where EU average = 100 ^{1; 9}			87%	100%	EU2013: 100%		
Share of national public funding to transnationally coordinated research in total GBAORD ¹	1.31%			3%	EU2010: 3.8%		

Enterprise Estonia

Strategic Activity

No indicator/objective for helping start-ups !

© Innovation Perspectives 2019

How to Allocate Your R&D funding?

Spread thin – across many areas/ideas?

Focused on a few areas/ideas?

Existing TAKs – not succeeding

Competence Centre on Health Technologies

SIA(

ECC

Systems Competence Centre

Multiple Issues:

- Lack of critical mass
- Financing rules, ownership model
- Inability to evolve/change model once established
- Focus on "outsmarting the system", taking advantage

Take-aways from Interviews

- Companies want/need applied research
 - Diverse set of requirements
- But no good source for applied research currently
 - Mismatch with Estonian universities
 - TAKs not succeeding

National Applied Research Labs in EU

EU Country	National Applied Research Lab(s)	EU Country	National Applied Research Lab(s)
Austria	AIT	Italy	IIT
Belgium	imec, VITO	Latvia	x
Bulgaria	X	Lithuania	x
Croatia	ICENT	Luxembourg	LIST
Cyprus	EUC	Malta	x
Czechia	X	Netherlands	TNO
Denmark	DTI, GTS	Poland	NCBR
Estonia	X	Portugal	X
Finland	VTT	Romania	X
France	INRIA, CNRS, others	Slovakia	X
Germany	Fraunhofer	Slovenia	IJS
Greece	CERTH, FORTH, etc.	Spain	Tecnalia
Hungary	X	Sweden	RISE
Ireland	X	UK	Catapult Centers, etc.

VTT - Finland

VTT – Finland (2)

GTS - Denmark

Denmark GTS = "Approved Technical Service Provider"

Provides both R&D (25%) and Services (75%) to large enterprises and SMBs/SMEs in Denmark & other countries

Variety of Services:

- Courses, seminars and other events Consultancy
- Research and business development Inspection and control
- Measuring technique and calibration Certification, testing and simulation

Seven Institutes:

- Alexandra Institute IT (Info Tech)
- Bioneer Biotech & Pharma
- DBI Fire & Security (& Buildings)
- DFM Metrology (Measurement and Quality)
- DHI Water & Environment
- DTI Systems Integration, Solutions
- Force Technology Energy & Infrastructure

GTS – Technical Services Focus

Key figures 2017 Unique danish 46 costumers 170 19,139 Total turnover 43 Number of participants in course activities 489 32,800 million EUR 230 Number of employees 3,805 R&D Performance contracts Danish commercial turnover Competitive R&D funds International commercial turnover

© Innovation Perspectives 2019

SRI International

Sensing & Devices

\$500m revenue/yr ~ 1000 research projects/yr ~ 2000 employees 5-10 start-ups/yr

Health & Biomedical Sciences

Information & Computing

Innovation & Economic Dev.

Robotics & Automation

Education & Learning

SRI International

"Pass-through" research ranges from 10 to 50% depending on research area

Different Applied Research Models

	GTS	VTT	SRI
Turnover	489 M€	258 M€	~500 M\$
# Employees	3805	2368	~1800
# Commercial Customers/yr	19,000+	1530	<100

EARTO.EU

Innovation Perspectives

Economic Footprint of 9 European RTOs in 2015-2016

	EMPLOYMENT (HC)	TURNOVER (B€)	VALUE ADDED (B€)
Direct	54,191	7.193	3.503
Indirect	60,656	7.363	3.361
Induced	10,385	1.223	0.563
Total core	125,231	15.779	7.427
Fiscal return c	ore (B€) 1.834	0.261	0.541

= 2.6 BILLION EURO FISCAL RETURN CORE ACTIVITIES

Contract research	139,767	17.610	8.289	
Spin-off activities	18,800	2.369	1.115	
Total	283,798	35.758	16.831	

<u>9 RTOs in Study:</u> AIT – Austria CEA – France DTI – Denmark Fraunhofer – Germany IMEC – Belgium SINTEF – Norway Tecnalia – Spain TNO – Netherlands VTT - Finland

= 6.7 BILLION EURO FISCAL RETURN TOTAL CORE ACTIVITIES, CONTRACT RESEARCH, AND SPIN-OFF ACTIVITIES

Transitioning Research to Industry

Research has to get to the market if it's going to make a difference!

Start-ups, Entrepreneurs Create Jobs

New USA Jobs by Source (1977-2005)

Net Jobs Gained by Source 1977-2005								
From Startups	+ 85,674,601							
From Existing Firms	- 30,423,864							

Big Companies Need to do R&D Also

Harvard Business Review

RESEARCH & DEVELOPMENT

There's No Good Alternative to Investing in R&D

by Anne Marie Knott

APRIL 17, 2018 UPDATED APRIL 19, 2018

GROWTH STRATEGY

When Large Companies Are Better at Entrepreneurship than Startups

by Chris Zook

DECEMBER 27, 2016

Estonian Company Distribution - 2016

Class size	Number of enterprises				Number	of persons er	nployed	Value added				
	Estonia		EU-28	Estonia		EU-28	Esto	onia	EU-28			
		Number	Share	Share	Number	Share	Share	Billion €	Share	Share		
Micro		62 493	90.5 %	93.0 %	127 177	30.4 %	29.8 %	2.8	26.2 %	20.9 %		
Small		5 315	7.7 %	5.8 %	101 932	24.4 %	20.0 %	2.5	23.3 %	17.8 %		
Medium- sized		1 047	1.5 %	0.9 %	97 155	23.2 %	16.7 %	2.8	26.2 %	18.2 %		
SMEs		68 855	99.8 %	99.8 %	326 264	78.0 %	66.6 %	8.2	75.7 %	56.8 %		
Large		172	0.2 %	0.2 %	91 918	22.0 %	33.4 %	2.6	24.3 %	43.2 %		
Total		69 027	100.0 %	100.0 %	418 182	100.0 %	100.0 %	10.8	100.0 %	100.0 %		
Those are	oc tir	as are actimated by 2016 produced by DIM Foon based on 2009 2014 figures from the Structural Dusinger Statistics Database										

These are estimates for 2016 produced by DIW Econ, based on 2008-2014 figures from the Structural Business Statistics Database (Eurostat). The data cover the 'non-financial business economy', which includes industry, construction, trade, and services (NACE Rev. 2 sections B to J, L, M and N), but not enterprises in agriculture, forestry and fisheries and the largely non-market service sectors such as education and health. The following size-class definitions are applied: micro firms (0-9 persons employed), small firms (10-49 persons employed), medium-sized firms (50-249 persons employed), and large firms (250+ persons employed). The advantage of using Eurostat data is that the statistics are harmonised and comparable across countries. The disadvantage is that for some countries the data may be different from those published by national authorities.

Source: European Commission 2017 SBA Fact Sheet

Focus for ECAR ?

© Dennis Tsu 2019

GDP/Employee and Employment, 2016

Source: Statistical Office of Estonia

Alternative Scenarios for Estonia

- Don't change anything
 - But the current system is not succeeding
- Funding Pool dedicated to Applied Research
 - ETAG equivalent for TRLs 4-9
 - Doesn't solve the problem of who will do the work
- ECAR (Estonian Center for Applied Research)
 - Dedicated resources, appropriate skills to do applied research
 - Where to focus?
 - How to fund?
- Other ideas ?

Do you agree?

- More Applied Research is needed in Estonia
- An Applied Research Institute is the best way to make this happen

What should it be trying to do?

- Assist existing Estonian companies
- Provide disruptive technologies to start-ups
- Other?

Alternative Scenarios for ECAR

- Advanced Applied Research
 - Pick a megatrend invest for the long haul
- Technical Services
 - Provide technical assistance to existing companies
- Expand/build on ICT, Security Successes
 - encourage more start-ups
- Other ideas ?

Key Challenge for ECAR = Scale

- Amount of basic research in universities that can be transitioned to industry
- Amount of funding available to support ECAR
- Number, size of companies to take advantage of ECAR research
- Amount of VC funding available, and where it is focused
- Amount of funding being spent by other countries/ research labs

Scale Challenges

Hypothetical Mid-size Estonian Company

- 100 people
- €50m revenue
- 5% on R&D
 - €2.5M R&D spending
 - 20 people

Example Applied Research Project

- 5 people
- 6 months
- €250k cost

Hard to justify spending 10% of R&D budget on uncertain applied research

Without government support/subsidy – this will not happen

US Academic R&D – by Focus Area

TABLE 5-5 🏼

Federal funding of academic S&E R&D, by agency and field: FY 2016

(Percent)

Field		All fed	eral R&D expenditures	DOD	DOE	HHS	NASA	NSF	USDA	Other ^a
All R&D fields	38,793,542		13.7	4.6	53.3	3.8	13.2	3.1	8.3	
Computer sciences	1,442,771		41.9	4.0	5.6	1.1	40.9	0.2	6.3	
Geosciences	1,992,990			9.5	5.3	3.2	17.7	35.4	1.6	27.3
Life sciences		56%	21,798,334	4.4	0.7	83.2	0.4	3.3	4.5	3.4
Mathematical sciences			444,419	27.1	2.6	10.5	0.7	51.7	1.1	6.3
Physical sciences			3,286,816	16.0	21.3	15.8	14.3	29.8	0.2	2.6
Psychology			761,433	9.2	0.1	65.7	2.9	9.3	0.9	12.0
Social sciences			898,576	8.6	1.2	36.0	0.9	16.2	5.6	31.7
Sciences nec			465,015	23.0	3.7	23.5	1.4	28.0	2.6	17.8
Engineering		17%	6,583,476	39.6	10.6	10.0	7.8	19.3	1.0	11.7
Non-S&E			1,119,712	5.1	0.6	19.6	0.8	23.5	3.7	46.7

Potential Focus Areas – to be explored further

Strong Estonian	Timber/Wood Dairy/Food Energy	ICT, Cybe Robotics	er-security,	
Companies Weak	Not interesting	Gene data personalia Ecology	abank, zed medicine	
	Weak		Strong	I
© Innovation Perspectiv	es 2019 70	Estonian Research	Innovation P	erspectives

Potential Focus Areas – to be explored further

Recommendation = Pick One

- Path One focus on helping existing Estonian companies (food/dairy, wood/timber, manufacturing)
 - Partner with VTT
- Path Two focus on creating more start-ups in the ICT/Robotics space
 - Build on existing successes
- Path Three long term bet on a megatrend, in conjunction with Estonian government, universities and EU
 - "Invent the Future"
Potential VTT Partnership

- VTT is open to a potential partnership with Estonia/ECAR.
- VTT is willing to consider working together, transferring people, investing jointly in infrastructure, and being joint equity owners in a sector.
- VTT would want to identify research areas of common interest—i.e. where our focus areas for research match.
- This discussion should be continued.

More New Start-Ups in ICT, Robotics

- Build on top of success, reputation in these areas
 - Skype, E-Government, Cybernetica, GuardTime, Cleveron, Starship, etc...
- Existing VC funding avenues
- Well understood growth paths
- Identified needs:
 - Al, data science
 - Databases/Hadoop
 - Application specific knowledge

EY- Megatrends

Projected EU Funding – post 2020

Potential Mission areas and Specific Missions

Mission area	Potential examples of concrete missions
Digitisation	Quantum ³ : Build the first universal quantum computer in Europe by
	xxx to enable breakthroughs in artificial intelligence.
Health	Beating cancer: Cure paediatric cancer by 20xx.
Clean Europe	Healthy Oceans: Eliminating plastic waste in rivers and seas by 20xx.
	Clean cities: the first xx carbon-neutral cities with clean air by 20xx
Food/ Agriculture	Sustainable land: Restoring soil health by 20xx.

Potential areas for institutional partnerships⁵

- 1. Health innovation, for the rapid development, deployment and safe use of medical treatments, devices and technologies enhanced by digital technologies.
- 2. Global health, including links to national health research systems and philanthropic funding.
- 3. Key digital technologies, including novel technologies such as AI and linking to downstream sectors.
- 4. Metrology, to develop new tools for the speed, accuracy and cost of measurement.
- 5. Air traffic management, including new tools and technologies for flexible use of airspace (including for novel avionics, drones).
- 6. Aviation, to reduce CO2 emissions and noise, including through electric or other alternative propulsion systems.
- 7. Rail, including transformative change in rail through automation and digitisation.
- 8. Bio-based solutions, including CO2 uptake technologies for food and energy; biomass; and maritime resources.
- 9. Fuel cells and hydrogen energy storage technologies.
- 10. Connected, autonomous mobility (as identified in the Third Mobility Package)

Estonian Government Policy

- ECAR (Mission/Vision/Funding/Programs) needs to be coordinated with:
 - Ministry of Education & Research
 - Ministry of Economic Affairs & Communications
 - Ministry of Finance
 - Estonian Research Council
- Need policy coordination on many issues:
 - Research funding
 - Industry emphasis
 - Company formation/growth

Staffing Challenge

- Initial staff:
 - Estonian universities
 - TAKs
 - Re-patriated Estonian scientists/engineers
 - Estonian companies
 - VTT staff ?
 - International research community
- Key management metric = attraction of int'l staff to Estonia

ECAR - Cooperation with Universities

Potential areas for collaboration:

- EU grant application process
- International staff recruiting
- IP offices
- Tech Transfer/Licensing functions
- Industry Councils/Research Coordination
- Career Path Options

Potential Impact:

- Greater Research Funding
- More Research put into practical use
- Additional license fees
- More Staffing Options

Discussion – Which Path for ECAR?

Existing companies/VTT

Cannot be decided in isolation

- Start-ups/ICT/Robotics
- Megatrend/Long-term

Must be coordinated with:

- Education ministry, research funding
- Economic ministry, industrial policy
- Finance ministry, EU priorities

Other Innovation Ecosystem Concerns

- Innovation Ecosystem Management/Coordination
- Immigration
- Risk Capital
- Capital Markets/Exit Opportunities
- Government R&D Spending Level
- Company R&D Spending Levels
- R&D Reporting by companies
- ETAG R&D funding allocation methods
- STEM teacher shortage
- STEM education in secondary schools
- Compensation Levels in Universities

The Nature of Work is Changing

Open Discussion

- VTT workshops to define focus areas with highest impact on Estonian economy
 - And develop a pilot action roadmap
- Continued discussion of potential VTT Partnership
- More in-depth assessment of company needs/ requirements by industry sector
- More discussion with Government ministries on industrial/economic development policy

How to allocate increase in R&D funding?

Product Development – 25% Encourage company activity

Applied Research – 50%

Basic Research – 25% Allocate incremental funds to specific areas identified by industry

Concluding Thoughts

- Estonia wants to become an innovation-driven economy
- Innovation requires applied research
- Applied research is different from basic research
- ECAR can help catalyze applied research activities in Estonia
- But it will only be truly effective if ECAR is married to changes in basic research funding, industrial policy, and company behavior/incentives.

<u>dennis.tsu@gmail.com</u> +1-650-799-7921

© Dennis Tsu 2017